Calculus AB

4-5
(Day 1)
Integration by
Substitution
28) $\int \frac{1}{2 \sqrt{x}} d x$
36) $\int\left(\frac{t^{3}}{3}+\frac{1}{4 t^{2}}\right) d t$
$\int \frac{1}{2} x^{-\frac{1}{2}} d x$
$x^{\frac{1}{2}}+c$
$\sqrt{x}+c$
$\frac{1}{12} t^{4}-\frac{1}{4} t^{-1}+c$
$\frac{t^{4}}{12}-\frac{1}{4 t}+c$
This one doesn't have a chain rule,
so we don't need a u-substitution.
his one doesn't have a chain rule,
so we don't need a u-substitution.

Solve the differential equation. We can put the constant, 10 ,

$$
\text { 40) } \begin{aligned}
\frac{d y}{d x} & =\frac{10 x^{2}}{\sqrt{1+x^{3}}} \\
\int d y & =\int \frac{10 x^{2}}{\sqrt{1+x^{3}}} d x \quad u=1+x^{3} \\
y & =\frac{10}{3} \int \frac{3 x^{2}}{\sqrt{1+x^{3}}} d x=\frac{10}{3} \int \frac{1}{\sqrt{u}} d u \\
y & =\frac{10}{3}\left[2 u^{\frac{1}{2}}\right]+c \\
y & =\frac{10}{3}\left[2 \sqrt{1+x^{3}}\right]+c
\end{aligned}
$$

Assignment:
Pg. 306
11-41 odd

